
GPU on KVM
Gabriel Laskar <gabriel@lse.epita.fr>

Introduction

● How can we have 3D acceleration on VMs?
● Goals:

○ Portability
○ Security
○ and of course Quake !

Outline

● What is a GPU?
● How can we bring something to the screen?
● What is a VM?
● A virtualized device?
● How can we bring all this together?

What is a Graphic Card?

● Display
● Video Playback
● 2D & 3D Graphics
● Computation

GPUs are complex

State State

Pixel ShaderVertex Shader

Vertex
Pipeline

Rasterization Pixel Pipeline FramebufferVertex Data

Texture Data

GPU API

● Specs unknown
● Every GPU is different
● State is enormous (>1GB size)
● DMA & Computation

Graphic Stack
Application

Kernel KMSDRM

Mesa3D libGL

DRI, Mesa
Classic

State Tracker

WinSys

HW Driver

libDRM

Classic Mesa Gallium

Mesa3D

● Provides High Level APIs
○ 3D Acceleration: OpenGL/OpenGLES
○ Video Acceleration: XVMC, VAAPI, VDPAU

● Device dependant
● Divided in 2 parts: Mesa classic & Gallium3D

Gallium3D

● New architecture for graphic devices
● Allows code-sharing between drivers
● Used by radeon, nouveau & others
● Provides software fallback

Gallium API

● Screen: screen access, context & resource
creation

● Resource: texture or buffer
● Surface: resource binded as a framebuffer
● Sampler view: resource for shader use
● Context: constant state, resources

Gallium Shaders: TGSI

● Intermediate language for shaders
● Text based
● API not stable yet

TGSI Example
VERT

DCL IN[0]

DCL IN[1]

DCL OUT[0], POSITION

DCL OUT[1], COLOR

IMM FLT32 { 0.2, -0.1, 0.0, 0.0 }

ADD OUT[0], IN[0], IMM[0]

MOV OUT[1], IN[1]

END

EGL/GLX

● Graphics context management
● Surface/buffer binding
● EGL is an interface between OpenGL and

the windowing system

DRM

● Low level access to the GPU
● Perform Kernel Mode Setting
● Export GPU Primitives

○ Context allocations
○ Command queues
○ VRAM management with GEM & TTM
○ Buffer sharing with GEM & DMA-buf

● libDRM in userland wraps the interface

KMS

● In kernel API for modsetting
● Allow modesetting without root access
● Glitch-free boot
● Fast VT-Switch
● Kernel crash log
● Better power management

How can we have all of this inside a VM ?

Qemu/KVM

● Linux Hypervisor
● Leverage existing Linux APIs
● Use Qemu for VM Creation & Device

Emulation

Qemu/KVM

Linux Kernel
KVM

Hardware
Virtualization
Extensions

Qemu

guest

driver

virtual
device

HW

Qemu

guest

driver

virtual
device

Qemu

guest

driver

virtual
device

Device Virtualization

● Emulated Devices
○ Too Slow
○ GPU are too complex

● Virtualized Devices
○ Hard to do it right
○ What we want to do

● Hardware Passthrough
○ Good performances
○ No sharing

Virtualized OpenGL stack

● API remoting
● Virtual GPU
● HW Sharing: XenGT, Grid

API Remoting

3D API Redirector

RPC EndpointApp App App

GPU Driver

3D API

GPU

Guest Host

User-Level

API

Kernel

Hardware

API

Device Emulation

3D API

Rendering BackendApp App App

GPU Driver

3D API

GPU

Guest Host

User-Level

API

Kernel

Hardware

API

Virtual GPU Driver

Virtual GPU

Kernel

Hardware

State Management

GPU Emulator

Shared Memory

Virtio Devices

● Standard for virtualized devices
● Already used for net, block & console
● Easy code reuse

Virgl

● Virtio based virtual gpu
● Developed by David Airlie
● 2d and 3d version
● Portability: no need for a specific gpu

Virgl: What’s in it?

● vga device in Qemu
● Renderer Backend in Qemu (for 2D & 3D)
● KMS kernel driver for the guest
● Xorg DDX driver for guest
● Mesa Gallium3D based driver for guest

Virgl: virtio

● Single virtio queue used to send commands
to the host

● Protocol is based on Gallium3D
● IRQ for Cursor & Fence IRQ

Current Status

● Error handling
● Capabilities (OpenGL 3.0 for the moment)
● GL versioning
● GLES in guest or host
● Not usable for production yet

Want to try it?
http://virgil3d.github.io/

Questions?

http://virgil3d.github.io/
http://virgil3d.github.io/

